Approaches to Developing and Refining Animal Models for Use in Assessing the Efficacy of Medical Countermeasures According to the FDA Animal Rule

Carol L. Sabourin, Ph.D.
Senior Research Leader/Chief Scientist
Center for Life Sciences R&D, Battelle
12th Annual Meeting Safety Pharmacology Society
Track A – Animal Models
October 3, 2012
Outline

• Why is the “Animal Rule” necessary?
• What is the “Animal Rule”?
• Animal Model Development Under the Animal Rule
 – Anthrax
 – Smallpox
 – Botulinum
Outline

• Why is the “Animal Rule” necessary?
• What is the “Animal Rule”?
• Animal Model Development Under the Animal Rule
 – Anthrax
 – Smallpox
 – Botulinum
What are the Biological Threats?

Traditional Threats
- Priority Pathogens-Category A
 - Anthrax
 - Plague
 - Ebola
- Priority Pathogens-Category B
 - Glanders
 - Q Fever
- Priority Pathogens-Category C
 - Yellow fever
 - Rabies

Advanced Threats
- Add, delete, or mutate genes to engineer pathogens that are more resistant, transmissible, virulent
- Create viruses de novo
 (synthetic organisms - e.g., polio, 1918 influenza)

Emerging Threats
- “Natural” and emerging diseases:
 - Pandemic flu
 - SARS
 - Drug-resistant TB
 - Malaria
 - Cholera
 - MRSA

Enhanced Threats
- “Bioprospecting”: Finding particularly virulent strains in nature
- Cultivating particularly virulent strains of pathogens in the laboratory

Emerging Threats
- Multi-drug and vaccine resistant pathogens
Diseases with antibiotics, therapeutics, vaccines that require testing under the Animal Rule

- Anthrax
- Smallpox (monkeypox; rabbitpox)
- Botulinum toxin
- Plague
- Tularemia
- Meliodosis
- Glanders
- Brucellosis
- Filoviruses

BSL-3 or BSL-4
Outline

• Why is the “Animal Rule” necessary?
• What is the “Animal Rule”?
• Animal Model Development Under the Animal Rule
 – Anthrax
 – Smallpox
 – Botulinum
The Animal Rule

- The Animal Rule *amended* the regulations to allow for approval of a new drug or biologic product for which safety has been established in humans and efficacy has been demonstrated in adequate and well-controlled animal studies believed to be predictive of the desired benefit in humans.

- Licensing of CBRN medical products when normal clinical trails are not possible requires alternative approaches to demonstrate *efficacy*.

- The Animal Rule was published in the Federal Register with an effective date of July 1, 2002.

 Subpart I – Approval of New Drugs When Human Efficacy Studies Are Not Ethical or Feasible (21 CFR Parts 314.600-650)

 Subpart H – Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible (21 CFR Parts 601.90-95)
Animal Rule: Tenets

- Reasonably well-understood pathophysiological mechanism of the toxicity of the substance (agent) and its prevention/reduction by the test product
 - "The effect can be demonstrated in a single animal species if there is a sufficiently well-characterized animal model for predicting the response in humans; no where in the Rule is “Two Animals” stated"

- Effect is demonstrated in an animal species expected to react with a response predictive of human

- Animal study outcome is clearly related to the desired benefit in human
 - Reduced morbidity/mortality

- Data on pharmacokinetics/dynamics of the product in animals and humans allows selection of an effective dose in humans
Potential misunderstandings

• The Rule does not apply if product approval can be based on standards described elsewhere in FDA's regulations – normal human trials can be done

• Safety must still be demonstrated in human subjects enrolled in Phase I, II & III clinical trials

• The Rule is not an Accelerated or Fast-Track approval and is not a short-cut to approval, in fact, it may take longer
Two products are approved under the Animal Rule

• Pyridostigmine bromide, indicated for prophylaxis against the lethal effects of soman nerve agent poisoning, was approved in 2003.

• Hydroxocobalamin, indicated for the treatment of known or suspected cyanide poisoning, was approved in 2006.

• Many more under development
Drug development process

Animal Rule Nonclinical Efficacy Studies

Drug Discovery → Preclinical → Phase 1 → Phase 2 → Phase 3 → FDA Review And Approval

Number of Compounds:
- 5,000 -10,000
- 250
- 5

One FDA Approved Drug

Number of Subjects:
- 20-100
- 100-500
- 1,000-5,000

3-6 years → 6-7 years → 0.5-2 years

IND Submitted → NDA Submitted

Phase 4: Post-marketing surveillance
The Biological Agent

- Etiologic agent same as that causing disease in humans
 - Surrogates can be acceptable (e.g. Monkeypox)
- Pathogenic determinants
 - How does the agent cause the pathology
 - Toxin production of a bacteria
 - Target and disrupt a target organ
 - This should be the same in both humans and the animal species
- Route of exposure should be same as the threat to humans
 - Aerosol challenge is often the route of exposure
- Quantification of exposure
 - Well characterized agent
 - Reliable and reproducible challenge dose
 - Show scalable relationship between dose and outcome (especially in humans)
The Host

• Host susceptibility and response
 – Animal species chosen should be susceptible to the agent – seems obvious but requires consideration of the dose compared to the human dose

• Natural history of the disease
 – Pathophysiologically should be comparable to humans
 – Time course of disease
 – Manifestations of disease (signs, symptoms)
 – Pathology
 – Outcome (death, recovery)

• Endpoints
 – Ultimate key to success is the study endpoints
Study endpoints in addition to mortality

- Clinical observations/body weight
- Telemetry – body temperature and activity
- Hematology/clinical chemistry
- Bacteremia/Viral titers
- Cytokine levels, Toxin levels
- Immune response
- Pathology
Outline

• Why is the “Animal Rule” necessary?
• What is the “Animal Rule”?
• Animal Model Development Under the Animal Rule
 – Anthrax
 – Smallpox
 – Botulinum
Natural history study of inhalational anthrax in Cynomolgus macaques

- **LD$_{50}$** – 61,800 cfu
- **Gross lesions**
 - Splenomegaly, lymph node enlargement, hemorrhage particularly involving the meninges and lungs
- **Endpoint** - death due to toxemia

Development of a monotherapy model in Cynomolgus macaques

- Characterize the disease progression observed in cynomolgus macaques following exposure to *B. anthracis* via the inhalational route of exposure

- Develop and utilize critical assays for support of future efficacy studies in the cynomolgus macaque

- Evaluate in a product neutral fashion the therapeutic efficacy of adjunct therapies

Henning et al., Development of an Inhalational Bacillus anthracis Exposure Therapeutic Model in Cynomolgus Macaques. Clinical and Vaccine Immunology, accepted.
Design for the efficacy study of a anti-PA monoclonal antibody

- Objective: Assess the disease progression in untreated animals (challenged and unchallenged) to define appropriate indicators of illness and preliminarily assess the efficacy an anti-PA mAb
 - 30 Cynomolgus macaques were randomized into three groups
 - 24 monkeys challenged with 432 (+/-156) B. anthracis LD\textsubscript{50} equivalents (LD50 = 61,800 cfu)
 - 12 monkeys treated at ECL positive with 10mg/kg anti-PA mAb
 - 12 monkeys untreated
 - 6 monkeys unchallenged

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Monkeys per Group</th>
<th>mAb Dose</th>
<th>Treatment Point Post-Challenge</th>
<th>Dose Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>10 mg/kg</td>
<td>Individual times will be based on serum PA levels (ECL Positive)</td>
<td>IV (bolus injection)</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>6 (unchallenged)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Study design is complex

• Blood Collections
 – Day -7,
 – Hours 24, 30, 36, 42, 48, 54, 60, 66, 72 post median challenge time
 – Days 5, 8, 14, and 28 post challenge
 - Bacteremia culture, qPCR, CBC (differential), and C-reactive protein (CRP)
 - ECL, PA-ELISA

• Clinical Monitoring
 – Telemetry - Hourly Body Temperature and Activity
 – Outward Clinical Signs - Every six hours

• Pathology
 – Gross necropsy and Histopathology

• Treatment mAb administered on an individual basis (IV bolus) at first positive ECL result
Clinical profiles

Unchallenged Control Animals
- WBC – Diurnal
- N/L Ratio – Unchanged
- Bacteremia – Negative
- PA – Negative
- Temperature - Disrupted

Challenged Control Animals
- WBC – Elevated
- N/L Ratio – Increase
- Bacteremia – Positive
- PA – Positive
- Temperature - Increased
Mortality – significantly different between the treated and untreated

<table>
<thead>
<tr>
<th>Group</th>
<th># Survived/ # Total</th>
<th>Survival Percent</th>
<th>Mean Time to Death (hr)</th>
<th>Fisher's Exact Test (p-value)</th>
<th>Log Rank Test (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/12</td>
<td>75%</td>
<td>90.5</td>
<td>0.0061*</td>
<td>0.0127*</td>
</tr>
<tr>
<td>2</td>
<td>2/12</td>
<td>17%</td>
<td>133.21</td>
<td>0.0061*</td>
<td>0.0127*</td>
</tr>
<tr>
<td>3</td>
<td>6/6</td>
<td>100%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

p-value = 0.0061
NHP monotherapy model: Conclusions

- Cynomolgus macaques challenged with *Bacillus anthracis* via the inhalational exposure route exhibit clinical and physiological abnormalities following challenge.

- Specific diagnostic techniques including ECL, PA-ELISA, qPCR, and Bacteremia cultures can be used to confirm infection.

- The clinical findings (abnormal CBC, body temperature disruption, decreased activity) observed in Cynomolgus macaques post-exposure appear to be delayed relative to confirmation of infection.

- Treatment of animals confirmed to be infected with a mAb against PA is efficacious in preventing death.
Progression of studies for vaccine development

• Pharmacokinetic/Toxicity and Immunogenicity
 – Dose regimen/schedule
 – Dose ranging/Dose response

• Efficacy
 – Dose ranging/Dose response
 – Regimen and schedule

• Correlate Refinement Studies
 – Passive transfer of human antibody
 – Time to protection
 – Duration of protection
 – Breakthrough
Endpoints of an anthrax vaccine study

• Survival / Lethality
• Non-lethal pathology or clinical observations
 – Pneumonia
 – Fever
 – Hematology (white blood cell shift reflecting infection)
 – Clinical Chemistries (i.e., Liver Function Tests)
• Bacteremia
• Immunomodulation assessments
 – Antibody levels and function
 – Cellular immune response
US Licensed Anthrax Vaccine

• Anthrax Vaccine Adsorbed, USP
 – ‘BioThrax’
 – Aluminum hydroxide adsorbed
 – Sterile, cell-free filtrate made from microaerophilic cultures of avirulent, non-encapsulated *B. anthracis* V770-NP1-R
 – Primary immunogen is PA
 – Manufactured
 - Michigan Dept of Health until 1998
 - Emergent BioSolutions

• Adjuvant and additives
 – Adjuvant 1.2 mg/mL aluminum (Al(OH)₃, 0.85% NaCl)
 – Preservatives: 25 µg/mL benzethonium chloride and 100 µg/mL formaldehyde
CDC Anthrax Vaccine Research Program

- Vaccinate NHPs with dilutions of the Anthrax Vaccine Adsorbed at week 0 and boosted at 4 and 26 weeks
 - Blood collections during the vaccination schedule to assess the immunological response and correlation with survival at 12, 30, and 52 months
 - Anthrax aerosol challenges >150 NHP
 - Humoral and cellular immune response at >20 time points (10 assays)

- Parallel human clinical trial schedule and route

- Analysis of correlates of protection
Dose-dependent antibody levels in response to AVA correlated with human clinical trial

- Antibody levels were induced after vaccination
- Peak levels occurred 2-4 weeks post the 3rd vaccination at week 28
- Post week 30, antibody levels gradually decreased to low but detectable levels
- NHPs receiving three doses of AVA were protected for 52 months from an aerosol challenge

Quinn et al., Clin Vaccine Immunol 2012 Aug 29. [Epub ahead of print]
Next generation anthrax Recombinant Protective Antigen vaccine in multiple species

Efficacy studies in rabbits

Stark et al., 8th Annual ASM Biodefense & Emerging Diseases, Baltimore, MD, February 21-24, 2010
Fay et al., Sci Transl Med. 2012 Sep 12;4(151):151ra126
Outline

• Why is the “Animal Rule” necessary?
• What is the “Animal Rule”?
• Animal Model Development Under the Animal Rule
 – Anthrax
 – Smallpox
 – Botulinum
Monkeypox virus is a surrogate for Variola major (Smallpox)

- Members of the Poxviridae family
- Incubation period for smallpox is 1 to 12 days before the symptoms of fever, headache and rash appear
- Pathology of monkeypox infection in cynomolgus monkeys is similar to that of smallpox infections in humans (Zaucha et al., Lab Invest 2001;81:1581)
- Secondary parameters of infection
 - Lesion presentation, weight loss, hematological changes, virus shedding in saliva, virus recovery from tissues, and histopathology
Natural history study IN vs. IV challenge for Monkeypox showed differential mortality

- Differential mortality observed in high dose groups of NHPs challenged via the IV and IN routes
- Increased percent body weight declination and severe clinical observations are more prevalent in the IN dose response

Schmidt et al., XVII International Poxvirus and Iridovirus Conference, Grainau, Germany. June 8-12, 2008.
Responses varied by the route of challenge

- IV Responses
 - Greater lesion development
 - Increased clinical assessment scores
 - Increased mortality

Schmidt et al., XVII International Poxvirus and Iridovirus Conference, Grainau, Germany. June 8-12, 2008.
IN and IV challenge routes showed similar temperature and activity

- Similar Telemetry data observed in monkeys developing severe infection in both challenge routes
- Temperature increase, which did not return to baseline levels or a normal diurnal pattern
- Significantly reduced activity levels

Schmidt et al., XVII International Poxvirus and Iridovirus Conference, Grainau, Germany. June 8-12, 2008.
Efficacy of ACAM2000 in NHPs

- An adapted vaccinia virus that was derived from the existing Dryvax® vaccine and grown in cell culture (ACAM2000)
- Monkeys were vaccinated with ACAM2000 and challenged IV at 2 months with a lethal dose of monkeypox virus
- Both vaccines were immunogenic and efficacious and no viremia was identified

Licensing medical countermeasures for Smallpox

- ACAM 2000 was licensed based on non-inferiority in a clinical trial
- Anti-virals are under development
- A rabbitpox intradermal model is currently under development
Outline

• Why is the “Animal Rule” necessary?
• What is the “Animal Rule”?
• Animal Model Development Under the Animal Rule
 – Anthrax
 – Smallpox
 – Botulinum
Botulinum Neurotoxin

• Botulinum neurotoxin is the most lethal toxin known to man
• Seven toxins (A-G) – different types affect different animals
• Causes the same disease after inhalation, oral ingestion, or injection
• Botulinum vaccine
• Botulinum anti-toxin
Natural history study to determine the LD$_{50}$ of botulinum neurotoxin

- Clinical and physiological parameters to aid in the understanding of disease progression
 - Clinical observations
 - Body weight
 - Clinical hematology
 - Clinical chemistry
 - Telemetric monitoring
 - Circulating neurotoxin levels

Sanford et al., Clin Vaccine Immunol. 2010 September; 17(9): 1293–1304.
Botulinum neurotoxin: physiological parameters in the NHP

Sanford et al., Clin Vaccine Immunol. 2010 September; 17(9): 1293–1304.
A botulinum vaccine showed efficacy in the NHP model

- All vaccinated animals survived challenge and remained asymptomatic during the 30 day post-challenge observation period
- Circulating neurotoxin was detected in the serum of non-vaccinated control animals but not in vaccinated animals
- Vaccine provides excellent protection in rhesus macaques

Courtesy of DynPort Vaccine Co. LLC (DVC), a CSC company; DoD Contract DAMD 17-98-C-8024
Key points for a successful efficacy study under the Animal Rule

• Challenge material is a “critical reagent” - preparation and characterization of the infectious agent must be standardized, consistent, and reproducible

• Optimized/validated assays to monitor the response and bridge data to humans (non-validated assays may be useful and acceptable)

• Statistical plan in place

• Pivotal studies conducted under the FDA GLP guidelines
Acknowledgements

• Scientists
 – Dan Sanford, Ph.D.
 – Gloria Sivko, Ph.D., D.V.M.
 – Jason Mott, Ph.D. D.V.M
 – Robert Hunt, D.V.M
 – John Bigger, PhD
 – James E. Estep, Ph.D., D.V.M.
 – Gabriel Meister, Ph.D.
 – Thomas Rudge, Ph.D.
 – Kristin Clement, Ph.D.
 – Lisa Henning, Ph.D.
 – Jason Comer, Ph.D.
 – Roy Barnewall, Ph.D., D.V.M

• Team of others
 – Vivo Technicians
 – Micro Technicians
 – Assay Technicians
 – Clinical Veterinarians
 – Pathologists
 – Statisticians
Questions?