Imaging to Measure Cardiac Contractility: Current and Future

Safety Pharmacology Society
2012

Jon Heyen on behalf of Bob Coatney
Background / Context / Scope

Contractility = Force generated under very controlled conditions in single orientation (force generated at a constant length)

Myocardial Function / Mechanics under dynamic conditions (preload, afterload, neurologic input etc) in multiple planes and orientations

Imaging offers the evaluation of Myocardial Performance with “Context”
Objectives

- Overview of Non-clinical Cardiac Imaging - Current State
 - Echocardiography and Cardiac Magnetic Resonance Imaging (cMRI)
 - “Routine” Parameters of Cardiac Function (Systolic and Diastolic)
 - Parameters Associated with Cardiac Performance / “Contractility”

- Emerging Techniques to Evaluate Myocardial Mechanics – Future State
 - Strain and Strain Rate Imaging
 - 4 dimensional Imaging (Echocardiography)
 - Functional or Contractile Reserve (Pharmacologic “Stress Echo”)

- Challenges to Greater Application and Acceptance
 - Sensitivity / Capability to detect relevant change
 - Variability - Robust, Repeatable, and Reliable
 - Challenges of “Fitting into” typical safety study paradigms
 - Cost Effectiveness

- Where does Cardiac Imaging “Fit” in Non-clinical Safety Studies?
 - Integrate Cardiac Approach
 - Integration of Structure and Function in most Relevant Context
 - Translation
Echo and cMRI for Cardiac Structure & Function

- **Left Ventricular Structure and Function (Systolic and Diastolic)**
- **Right Ventricular Structure and Function (Systolic) – Largely MRI**
- **Atria and Valves**
 - Mitral Valve lesion
- **Left Ventricular Structure and Function (Systolic and Diastolic)**
Left Ventricular Structure

- Wall thickness
- Left Ventricular Mass
- Chamber dimensions & Volumes

Volumetric, planar and single point approaches

- SHR-SP
- Normal Diet
- Fat / Salt Diet 16 weeks
- FSD + Drug 16 weeks

Aortic Banding

Anterior LV Wall
LV Chamber Diameter
Posterior LV Wall

M-Mode

cMRI
Left Ventricular Function

- Left Ventricular Systolic Function
 - End Diastolic Volume
 - End Systolic Volume
 - Stroke Volume
 - Cardiac Output / Index
 - Ejection Fraction
 - Fraction Shortening
 - Fractional Area Change

- Volumetric Techniques
 - Fast cine MRI
 - 3 & 4 Dimension Echocardiography

- Geometric Techniques
 - Multi – slice or plane reconstructions

- Blood Flow
 - Outflow Doppler
 - Velocity encoding MRI

Myocardial Infarction (MI)
- Normal EF=75%
- MI EF=19%

Tsusaki et.al, J Med. Primatol. 2006
Left Ventricular Function

Left Ventricular Diastolic Function

- **Transmitral Doppler**
- **Myocardial Tissue Doppler**
- **Parameters**
 - Early Peak Velocity (E, E’)
 - Atrial Peak Velocity (A, A’)
 - Isovolumic Relaxation Time (IVRT, IVRT’)
 - E wave Deceleration Time
 - E/E’ ratio

MRI Techniques

- Phase contrast of Transmitral Flow
- Velocity Encoding TMF, AO and PVF

Parameters of Myocardial Performance ("Contractility")

Parameters of systolic function

<table>
<thead>
<tr>
<th></th>
<th>2 D Grey Scale / M-mode</th>
<th>Doppler</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejection Fraction</td>
<td></td>
<td>IsoVolumic Contraction Time (transmitral and myocardial Doppler)</td>
<td>Velocity of Circumferential Fiber Shortening</td>
</tr>
<tr>
<td>Fractional Shortening</td>
<td></td>
<td>LV Ejection Time (LVET)</td>
<td>LV Pre-Ejection Period (PEP)</td>
</tr>
<tr>
<td>Fractional Area Change</td>
<td></td>
<td>Tei index / MPI</td>
<td>LVPEP/LVET</td>
</tr>
<tr>
<td>Cardiac Output</td>
<td></td>
<td>Cardiac Output</td>
<td></td>
</tr>
<tr>
<td>E Point to Septum Separation</td>
<td></td>
<td>LV Ejection Time</td>
<td></td>
</tr>
</tbody>
</table>

With So many possibilities – what to choose / use?
Parameters of Myocardial Performance ("Contractility")

- **Ejection Fraction**
 - Translationally Relevant
 - Widely used
 - Sensitivity – Capable of detecting a 5% change
 - Concordant with similar change in dP/dt
 - Under controlled experimental design with skilled individuals
 - Is it a Good Biomarker of contractility???
 - Calculated parameter
 - \((\text{End diastolic volume} - \text{End systolic volume}) / \text{End diastolic volume}\)
 - EDV, & ESV are calculated parameters
 - Effected by preload (venous return, ventricular filling)
 - Effected by heart rate
 - Can have substantial changes in cardiac structure and function with no change in EF
 - Most useful in context of “complete” imaging structure and function evaluation
Dog Echo: Milrinone and Contractility

Linear Regression of $\frac{dp}{dt^+}$ vs Ejection Fraction

- Study by Terri S and Laura R
- Echo parameters can provide contractility data in acute tox studies
- Positive vs Negative inotrope
- Rat similar results: 1200 mmHg/s = ~5% EF

$r^2=0.887 \ P=0.005$
Emerging and Advanced Techniques / Applications
Strain & Strain Rate Imaging

- **Strain** = Deformation
- **Strain Rate** = Time course of Deformation
- **Directionality**
 - Longitudinal shortening
 - Circumferential shortening
 - Radial Thickening
 - Torsional / Rotational
 - Twist = Basal Rotation – Apical Rotation
- **Global vs Regional**
 - **Echocardiography**
 - Tissue Doppler
 - 2 & 3 D grey scale speckle tracking
 - **MRI**
 - Tissue Tagging (pulse phase)
 - Deformation Tracking
 - DENSE – Displacement Encoding

Wu, et al. JACC: Cardiovascular Imaging, 2009
Strain and Strain Rate Echocardiography

- Peak systolic strain rate has been positively correlated with dP/dt max
 - Index of myocardial contractility
- Global Systolic strain has been positively correlated with Ejection Fraction
 - Index of global myocardial function
- Strain Rate is minimally affected by preload and afterload
- Strain can be affected by load
 - Increased preload increases strain
 - Increased afterload decreases longitudinal strain & increases Rotation / Torsion

Gaining popularity and utility in human cardiology

- Often combined with Pharmacologic stress testing
- Strain / Strain Rate imaging used clinical to detect and monitor chemotherapeutic cardiotoxicity
 - TDI reveals early Epirubicin –induced strain rate decrease…
 - Mercuro, et.al The Oncologist, 12:1124, 2007
 - Detection and monitoring cardiotoxicity – what does modern cardiology offer?
 - Early detection of pegylated-doxorubicin toxicity in elderly patients.
Regional Strain and Strain Rate Echocardiography

2D Tissue Tracking Strain and Strain Rate Imaging

Radial and Circumferential Strain increase during dobutamine infusion (10ug/kg/min)
Pushing the Envelope – Early Detection

- **Global Strain and Strain Rate Echocardiography**
 - Increasing application clinically to detect and monitor chemotherapeutic cardiotoxicity

- **Functional (Contractile) Reserve**
 - The heart is an adaptable demand pump influenced by numerous inputs
 - So why do we routinely study its function at rest condition / state?
 - Clinical Cardiology focuses on function above baseline / rest
 - Stress Echocardiography
 - Physiologic (Exercise)
 - Pharmacologic (Dobutamine, Adenosine, Dipyridamole, milrinone, levosomendan)
Low Dose Doxorubicin – Early Detection

Left Ventricular Fractional Shortening

- **Con-Rest**
- **Con-Dob**
- **Dox-Rest**
- **Dox-Dob**

No change in Baseline FS
Dobutamine increased FS
No Change in dobutamine induced increase in FS

Dobutamine increased Radial Strain
Dobutamine induced increase in Radial Strain decreased (day21)
Trend to decrease baseline Radial strain at day 42

Detected decrease in functional reserve after 3 doses of 2.0mg/kg of doxorubicin (~1.8mg)
Emerging and Advanced Techniques / Applications
3 & 4 Dimensional Echocardiography

• Capability available for larger animals
 • not yet for rodents
• Potential to reduce operator variability
• Potential to increase precision / accuracy
• Translation- increasing use in Clinical Medicine

Tsusaki et.al, J Med. Primatol. 2006
Challenges to Greater Application and Acceptance

- **Sensitivity**
 - Numerous examples in the literature demonstrating sensitivity to detect ~5% change in both measured and calculated parameters in experimental studies
 - Strongly related to experience and capability of site / sonographer

- **Specificity**
 - Most parameters are not “specific” for contractility per se
 - No one parameter “stands alone” in interpretation
 - Structural and functional parameters are interpreted together in context
 - Concordance with other parameters (dP/dt, QA, etc) not well understood
 - HESI Integrated CV strategy Combined telemetry and echo studies

- **Variability – the larger challenge**
 - Understanding the potential source / cause
 - Methods / Efforts to reduce
 - Efforts to Measure and Understand and Improve
 - HESI Multisite Study
Variability/Repeatability

- **Sources of variability**
 - Biological
 - Image Acquisition
 - Slice registration / alignment
 - Image quality
 - Image Analysis
 - Observer / Operator
 - Methodology
 - Mathematical reconstructions
 - Imaging Protocol
 - Other “systems or variables”
 - Anesthesia
 - Acclimation of subjects

- **Measures to Control Variability**
 - Sonographer Certification / Qualification
 - Single Sonographer per study
 - Optimize and validate methods
“Fitting In” on Typical Safety Studies

Challenges

- Imaging studies commonly require larger numbers of animals
 - due to variability
- Requires anesthesia for rodents and nonhuman primates
- **Timing / Potential interruption of measurement of other parameters – telemetry**
- Single dose or multiple dose paradigm – timing of effects to be monitored
- Acoustic window for echo may be altered by surgical implantation (thoracotomy)

Approaches to “Fit in” better

- Use the fewest, most robust parameters (reduce variability)
- Pooling of gender groups for statistics – statistical strategies
- Adapt advanced imaging platforms – 3 & 4 D Echo
Can Imaging Be Cost Effective?

- **Echocardiography Equipment is relatively inexpensive**
 - Very capable systems / portable units - $20,000 - $40,000
 - Capable for rats to larger species

- **Hidden Cost is in obtaining / gain / maintaining expertise**

- **With appropriate dedication and diligence can be a very valuable tool in the hands of the cardiology expert**

- **MRI Equipment still expensive**
 - Smaller “bench top” units available and improving

- **Commonly requires both “infrastructure” and technical expertise**
Where Does Imaging “Fit” into Safety Studies

- Evaluate Structure and Function simultaneously

- Serial assessment of structural and functional parameters

- Translation Opportunities – human to mouse to human

- Emerging Techniques / Platforms have the potential to increase utility in safety studies

- Best in an “Integrated Cardiac Biology” Evaluation
 - integration of structure, and function including pressure and biomarkers
Closing

- Echo and cMRI have great potential as informative, valuable, translational research tools

- It’s up to us to optimize the impact and application

- Integrative Cardiac Assessment
Acknowledgements

Cardiovascular & Imaging Scientists
Shufang Zhao
Fe Wright
Mike Quaile
Marcello Tontodonati
Jeff Burdick
Beat Jucker
Weike Bao

Safety Assessment Collaborators
Brian Berridge
Dennis Murphy
Jon Renninger
Eric Rossman
Lynne King
Heidi Colton

HESI Preclinical Imaging Committee members
Subcommittee members
Jon Heyen
Serguei Liachenko
Martin Sanders
All Team Members
Participating Sites
Pfizer:
Laura Ringer
Jill Steidl
Terri Swanson
Michelle Hemkens
Back Ups
Parameters of Myocardial Performance ("Contractility")

- **Fractional Shortening, Fractional Area Change**
 - Translationally Relevant
 - Sensitivity – Capable of detecting a 5% change
 - Concordant with similar change in dP/dt (in many situations)
 - Under controlled experimental design with skilled individuals
 - \(FS = \frac{(LV \text{ Diameter end diastole} - LV \text{ diameter end systole})}{LV \text{ Diameter end diastole}} \)
 - \(FAC = \frac{LV \text{ Area end diastole} - LV \text{ Area end systole}}{LV \text{ Area end diastole}} \)
 - Directly Measured Parameters
 - Potentially less variability than Ejection Fraction
 - Effected by preload (venous return, ventricular filling)
 - Effected by heart rate
 - Can have substantial changes in cardiac structure and function with no change
 - Most useful in context of “complete” imaging structure and function evaluation
Regional Strain, and Strain Rate Imaging

Early Detection of regional dysfunction

Rat Ischemia / reperfusion model
• 20 minute ischemia
• Early Detection of diastolic and systolic

Application in Safety Studies?
Objectives

✓ Overview of Non-clinical Cardiac Imaging - Current State
 – Echocardiography and Cardiac Magnetic Resonance Imaging (cMRI)
 – “Routine” Parameters of Cardiac Function (Systolic and Diastolic)
 – Parameters Associated with Cardiac Performance / “Contractility”

✓ Emerging Techniques to Evaluate Myocardial Mechanics – Future State
 – Strain and Strain Rate Imaging
 – Functional or Contractile Reserve (Pharmacologic “Stress Echo”)
 – 4 dimensional Imaging (Echocardiography)

▪ Challenges to Greater Application and Acceptance
 – Sensitivity / Capability to detect relevant change
 – Variability - Robust, Repeatable, and Reliable
 – Challenges of “Fitting into” typical safety study paradigms

▪ Where does Cardiac Imaging “Fit” in Non-clinical Safety Studies?
 – Integrate Cardiac Approach
 – Integration of Structure and Function in most Relevant Context
 – Translation
Contractility Rat: EF and dp/dt

- Linear relationship for milrinone in rat
- Echo parameters can provide contractility data in acute tox studies
- 1500 mmHg/s ~ 5% EF
Parameters of Myocardial Performance ("Contractility")

- **Pre-Ejection Period (PEP)**
 - Requires ECG and Transmitral Doppler tracings on same image
 - Measured from start of Q wave to upstroke of outflow velocity (opening of aortic valves)
 - Similar to QA Analysis???
 - But no formal comparison??
 - Infrequently used
 - Effected by heart rate
 - Normalization using LV ejection time (PEP/LVET)
Demonstrating Capability, Addressing Variability

HESI Preclinical Imaging Technical Committee
- Understanding and Addressing these issues

A Multi-Center and Multi-Modality Non-clinical Imaging Study for the Characterization of Drug-Induced Changes in Cardiac Structure and Function

Purpose: Determine the ability of Echocardiography and Magnetic Resonance Imaging to repeatedly quantify drug-induced changes in cardiac structure and function in repeat dose studies performed at multiple different sites.