Application of Abuse Liability Endpoints to Toxicology Studies: Considerations

Thomas J. Hudzik, PhD

AbbVie provided no support outside of Thomas Hudzik being an employee of AbbVie. The presentation contains no proprietary AbbVie data.
Overview

Abuse Liability Assessment Overview

Physical Dependence

Practical Considerations for Behavioral Studies

Application to GLP Toxicology Studies
 • Use of FOB for Physical Dependence
 • Use of Locomotor Activity
Criteria for Preclinical ALA assessment (Tier 1)

CNS Penetration (whether CNS drug or not)

- Direct measurement of CNS concentration
- Observation of behavioral effects (stim, depression, performance changes)
- Effects on CNS circuitry
 - EEG
 - Cerebral Microdialysis

Novel Modes of Action

- FDA are more conservative in approaching
 - Need to prove that unlike standard drugs of abuse

Active Metabolite > 10% of parent: all considerations apply

Biologics are not excluded from consideration at this time
Measurable Aspects of Abuse Liability – Tier 2

- Self-administration
- Reinforcing effects
- Drug discrimination
- Discriminative effects
- Physical dependence
- Discontinuation syndrome
Mechanisms of Tolerance & Withdrawal

Repeated CNS-active drug administration can produce neuroadaptive changes in the brain

These changes are often opposite to the intoxicating effects

- Example: drug produces hyperthermia; adaptive effect = hypothermia

- Can off-set the “high” to maintain homeostasis

Slide Modified from Carrie Markgraf, SOT, 2011
Pharmacology vs Withdrawal

<table>
<thead>
<tr>
<th>Opioid Pharmacology</th>
<th>Withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased GI Mobility</td>
<td>Cramping, GI distress, diarrhea</td>
</tr>
<tr>
<td>Analgesia</td>
<td>Hyperalgesia</td>
</tr>
<tr>
<td>Euphoria</td>
<td>Dysphoria</td>
</tr>
<tr>
<td>Sedative Pharmacology</td>
<td>Withdrawal</td>
</tr>
<tr>
<td>Sleep Induction</td>
<td>Insomnia</td>
</tr>
<tr>
<td>Anticonvulsant effects</td>
<td>Convulsion</td>
</tr>
<tr>
<td>Anxiolysis</td>
<td>Anxiety</td>
</tr>
<tr>
<td>Stimulant Pharmacology</td>
<td>Withdrawal</td>
</tr>
<tr>
<td>Euphoria</td>
<td>Depression, dysphoria</td>
</tr>
<tr>
<td>Appetite suppression</td>
<td>Hyperphagia</td>
</tr>
<tr>
<td>Motor stimulation</td>
<td>Motor suppression</td>
</tr>
</tbody>
</table>
Acute Withdrawal Timeframes

<table>
<thead>
<tr>
<th>Substance</th>
<th>Withdrawal Time Human</th>
<th>Withdrawal Time Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>5-7 days</td>
<td>1-2 days</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>1-4 weeks</td>
<td>> 3 days</td>
</tr>
<tr>
<td>Cannabis</td>
<td>5 days</td>
<td>≥ 96 h</td>
</tr>
<tr>
<td>Nicotine</td>
<td>2-4 weeks</td>
<td>4-14 days</td>
</tr>
<tr>
<td>Opiates</td>
<td>4-10 days</td>
<td>72 h</td>
</tr>
<tr>
<td>Stimulants</td>
<td>1-2 weeks</td>
<td>10 days (cocaine)</td>
</tr>
</tbody>
</table>

Slide Modified from Carrie Markgraf, SOT, 2011
Typical Physical Dependence Study Design

Pre-dose baseline

- **Bwt**: 1-2 days prior
- **Clin Obs**: X
- **FOB**: X
- **LMA**: X

Dosing Phase

- **Bwt**: Daily
- **Clin Obs**: Daily
- **FOB**: X
- **LMA**: X

- **(day 1, 2...final)**

Withdrawal

- **Bwt**: Daily
- **Clin Obs**: Daily
- **FOB**: X
- **LMA**: X

- **(day 1, 2...final)**

Endpoints

- FOB (Continuous Endpoints)
- Thermal Response
- Measured Forearm Grip Strength
- Measured Hindlimb Grip Strength
- Body Weight
- Body Temperature
- Respiration
- Urination
- Measured Hindlimb Splay
- FOB (Incident Endpoints)
- Presence
- Rate of Removal
-食品 Intake
- Locomotion
- Polyphasic Cycles
- Piloerection
- Emptiness
- Salivary
- Clinical Movements
- Ventilatory
- Gait
- Mobility
- Acidosis
- Vocalization
- Respiratory
- Sneeze
- Bladder Behavior
- Approach Response
- Touch Response
- Click Response
- Tail Pinch Response
- Paw Response
- Fighting Reflex
General Considerations for Behavioral Studies

Circadian Influence

Experimenter / Handler Experience / Consistency

Physical Conditions

(noise, temp, lighting)

Feed used

Locomotor Activity as an Adjunct Endpoint

All of the above applies, and changes in activity can be a product of many different factors or combinations of factors.
Fundamental issue with the standard studies: Drug Classes associated with dependence vs Endpoints*

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>FOB</th>
<th>Startle</th>
<th>LMA</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mu Agonist Opioids</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>Decr. Operant</td>
</tr>
<tr>
<td></td>
<td>GI, LM,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychomotor Stimulants</td>
<td>(-)</td>
<td>+/-</td>
<td>+/-</td>
<td>ICSS, operant</td>
</tr>
<tr>
<td>CNS Depressants</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>SSRIs</td>
<td>(-)</td>
<td>+</td>
<td>(-)</td>
<td>Anxiogenic</td>
</tr>
<tr>
<td>Caffeine</td>
<td>(-)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine</td>
<td>GI</td>
<td>+</td>
<td>+/-</td>
<td></td>
</tr>
</tbody>
</table>

+ An effect in withdrawal noted (+), not noted (-), +/- mixed
Variables to Consider

Species (rat generally sufficient)
• But should account for affinity differences from human

Precipitated vs spontaneous withdrawal

Duration of drug treatment
• Justify based on available literature. Min 21 days

Dose Frequency
• Justify based on half-life.

Route of Administration
• Match the clinical in most cases

Appropriate dose of drug (1, 3 and higher (e.g., 10) X max therapeutic/tolerated in human)

Reference drugs
• Eg., Opioids for other analgesics, stimulants for other ADHD drugs, etc.

Duration of post-WD Observations: 7 d typical, but if very long t1/2 drug, may consider longer
• Multiple assessments on each of first few days
• Telemetry may be best for physiological measures

PK of drug: capture when fully eliminated (≈ 5 t_{1/2s})

Both within and between group comparisons
Sample Design

Veh Tox → Clin Obs, etc → Histopath

Tox 10X
Tox 30X
Tox 100 X
Sample Design

Veh Tox

<table>
<thead>
<tr>
<th>Event</th>
<th>Veh Tox</th>
<th>Tox 10X</th>
<th>Tox 30X</th>
<th>Tox 100X</th>
</tr>
</thead>
</table>

Pre-dose baseline

<table>
<thead>
<tr>
<th>Event</th>
<th>Bwt</th>
<th>Clin Obs</th>
<th>FOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 days prior</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
</tr>
<tr>
<td>Bwt</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Clin Obs</td>
<td></td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>FOB</td>
<td></td>
<td></td>
<td>{Early, Mid}</td>
</tr>
</tbody>
</table>

Dosing Phase

<table>
<thead>
<tr>
<th>Event</th>
<th>Recovery Veh Tox</th>
<th>Recovery Tox 3X</th>
<th>Recovery Tox 10X</th>
</tr>
</thead>
</table>

Histogram

<table>
<thead>
<tr>
<th>Event</th>
<th>Recovery Veh Tox</th>
<th>Recovery Tox 3X</th>
<th>Recovery Tox 10X</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Daily</th>
<th>Daily</th>
<th>Daily</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>(day 1, 2...final)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td>X</td>
</tr>
<tr>
<td>Event</td>
<td>(day 1, 2...final)</td>
</tr>
</tbody>
</table>
Summary

Of the 3 types of abuse liability related studies, only physical dependence appears to be measurable in the context of a withdrawal study.

- Extended operant training / repeated administration of other drugs, surgery for iv catheter make the other 2 types of studies untenable.
 - Conditioned place preference possible, but requires larger N than used in a tox study, and often looked at as inferior to self-administration

When could one consider applying physical dependence endpoints to tox studies?

- Low risk compounds (cns penetration, but little in the way of behavioral activity).
- High risk compounds (engages 5-HT, GABA, ion channels, DA, glutamate, lots of behavioral effects, etc) should have a dedicated study.

Doses often are different than tox doses (additional groups)

Well-trained individuals are required